设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合
1个回答
因为α2,α3,α4线性无关
所以 α2,α3 线性无关
又因为 α1,α2,α3 线性相关
所以 α1可表示为α2,α3的线性组合
所以 α1可表示为α2,α3,α4的线性组合
相关问题
设向量组α1α2α3线性相关,向量组α2α3α4线性无关,问:α4能否由α1α2α3线性表示
设向量组α1,α2,α3线性无关,证明:向量组α1-a2-2α3,α2-α3,α3也线性无关.
已知向量组{α1,α2},{α1,α3,α4},{α2,α3}都线性无关,而{α1,α2,α3,α4}线性相关,则向量
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于
线性代数线性相关问题老师您好,请问向量组α1α2α3α4为4维列向量α2,α3,α4线性无关及α1=2α2-α3怎么就能
关于线性代数的题:见问题补充1.设向量组α(阿尔法)1,α2,α3线性相关,向量组α2,α3,α4线性无关,问(1)α1
若α1,α2,α3,α4,α5线性相关,α2,α3,α4,α5线性无关,则α1,α2,α3,α4,α5的极大线性无关组是
证明:若向量组α1.α2.α3.α4,α5线性无关,则向量组α1+α2,α2+α3,α3+α4,α4+α5,α5+α1线
已知向量组α1,α2,α3线性无关,若向量组α1+α2,α2+α3,λα1+α3线性无关,则λ满足_
若向量组α1,α2,α3,β1线性无关,α1,α2,β2线性相关,则