因为f{f[f(x)]}=27x+26
可以设f(x)=ax+b(a,b是常数)
所以f[f(x)]=a(ax+b)+b
f{f[f(x)]}=a[a(ax+b)+b]+b=27x+26
即a3(a的立方)=27 a=3
a2b+2ab+b+26 b=2
所以f(x)=3x+2
因为f{f[f(x)]}=27x+26
可以设f(x)=ax+b(a,b是常数)
所以f[f(x)]=a(ax+b)+b
f{f[f(x)]}=a[a(ax+b)+b]+b=27x+26
即a3(a的立方)=27 a=3
a2b+2ab+b+26 b=2
所以f(x)=3x+2