f(x)的定义域是x>0
f`(x)=2ax+(a+2)+1/x
=(2ax^2+(a+2)x+1)/x
=(ax+1)(2x+1)/x
当a>=0时
f`(x)>0
f(x)在(0,+∞)上单调增
a=0
x=-1/a
∵x>0
∴f(x)在(0,-1/a)上单调减
f(x)在[1/a,+∞)上单调增
f(x)的定义域是x>0
f`(x)=2ax+(a+2)+1/x
=(2ax^2+(a+2)x+1)/x
=(ax+1)(2x+1)/x
当a>=0时
f`(x)>0
f(x)在(0,+∞)上单调增
a=0
x=-1/a
∵x>0
∴f(x)在(0,-1/a)上单调减
f(x)在[1/a,+∞)上单调增