1、∵ABDE四点共圆
∴∠BAC+∠BDE=180
∵∠BDE+∠CDE=180
∴∠BAC=∠CDE
∴△CDE≈△CAB
CA/CD=√(S△ABC/S△DBC)=3
AD/AC=√(AC^2-CD^2)/AC=2√2/3
2、S△AOB/S△AOD=3,即
BO/OD=√3
△AOD≈△COB
S△AOD/S△COB=(OD/OB)^2=1/3
1、∵ABDE四点共圆
∴∠BAC+∠BDE=180
∵∠BDE+∠CDE=180
∴∠BAC=∠CDE
∴△CDE≈△CAB
CA/CD=√(S△ABC/S△DBC)=3
AD/AC=√(AC^2-CD^2)/AC=2√2/3
2、S△AOB/S△AOD=3,即
BO/OD=√3
△AOD≈△COB
S△AOD/S△COB=(OD/OB)^2=1/3