解
a,b是锐角
∴sina>0
∵cosa=4/5
由sin²a+cos²a=1
∴sina=√1-(4/5)²=3/5
∵a∈(0.π/2),b∈(0,π/2)
∴a+b∈(0.π)
∴sin(a+b)>0
∵cos(a+b)=-1/3
∴sin(a+b)=√1-(-1/3)²=2√2/3
∴cosb
=cos[(a+b)-a]
=cos(a+b)cosa+sin(a+b)sina
=-1/3×4/5+2√2/3×3/5
=(6√2-4)/15
解
a,b是锐角
∴sina>0
∵cosa=4/5
由sin²a+cos²a=1
∴sina=√1-(4/5)²=3/5
∵a∈(0.π/2),b∈(0,π/2)
∴a+b∈(0.π)
∴sin(a+b)>0
∵cos(a+b)=-1/3
∴sin(a+b)=√1-(-1/3)²=2√2/3
∴cosb
=cos[(a+b)-a]
=cos(a+b)cosa+sin(a+b)sina
=-1/3×4/5+2√2/3×3/5
=(6√2-4)/15