一道抛物线的题目帮忙``抛物线y=x^2的内接三角形OAB的直角顶点O为坐标原点分别以OA、OB为直径作圆,C为两圆的另

2个回答

  • 设,点A坐标为(t1,t1^2),点B坐标为(t2,t2^2),

    OA^2=t1^2+(t1^2)^2=t1^2+t1^4.

    OB^2=t2^2+t2^4.

    ∵OA⊥OB,有t1^2/t1*t2^2/t2=-1,

    t1*t2=-1.

    直线AB的方程为:(Y-t1^2)/(t2^2-t1^2)=(x-t1)/(t2-t1),

    即,Y=(t1+t2)x+1.

    (t1+t2)=(y-1)/x,

    令,点C的坐标为(X,Y),OA中点为点E,坐标为(Xa,ya),OB点为F,坐标为(Xf,yf).

    Xa=t1/2,ya=t1^2/2,

    xf=t2/2,yf=t2^2/2.

    (OA^2)/2=(xa-x)^2+(ya-y)^2,即有,

    X^2+Y^2-(t1x+t1^2y)=(t1^2+t1^4)/4,.(1)

    同理,

    X^2+y^2-(t2x+t2^2y)=(t2^2+t2^4)/4,.(2)

    (1)+(2)式,得

    2(X^2+Y^2)-(t1+t2)x-(t1^2+t2^4)y=[(t1^2+t2^2)+(t1^4+t2^4)]/4,

    而,t1+t2=(y-1)/x,t1*t2=-1.

    2(x^2+y^2)-(y-1)-[(t1+t2)^2-2t*t2)]*y=[(t1+t2)^2-2t1*t2+(t1^2+t2^2)^2-2(t1*t2)^2]/4

    2(x^2+y^2)-(y-1)-[(y-1)^2/x^2+2]y={(y-1)^2/x^2+2+[(t1+t2)^2-2t1*t2]^2-2}/4.

    即,点C的轨迹方程为:

    2(x^2+y^2)-(y-1)-[(y-1)^2/x^2+2]y={(y-1)^2/X^2+2+[(Y-1)^2/X^2+2]^2-2}/4.

    "繁"啊.