(1)在⊿BEC和⊿BDC中,∠EBC=∠DBG,∠FGE=45°=∠C
∴∠BDC=∠BEC,即⊿BEC∽⊿BDC
∴BD/BG=BE/BC,BG*BE=BD*BC
∵D为BC中点,∴BC=2BD
又∵⊿ABC为等腰直角三角形,∴AB=√2BD
即BG*BE=2BD^2=(√2BD)^2=BA^2
∴BG/BA=BA/BE
在⊿BAE和⊿BGA中,∠ABE=∠ABG
∴⊿BAE∽⊿BGA,即∠BAE=∠BGA=90°
∴AG垂直BE
(2)连接DE,E是AC中点,D是BC中点,∴DE//BA,因为BA⊥AC,所以DE⊥AC设AB=2aAE=a做CH⊥BE交BE的延长线于H
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS)∴CH=AG∠GAE=∠HCE
∵∠BAE为直角∴BE=√5a∴AE=AB*AE/BE=(2/√5)a∴CH=(2/√5)a
∵AG⊥BE,∠FGE=45∴∠AGF=45=∠ECB∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;∴∠DFE=∠BCH
又∵DE⊥AC,CH⊥BE ∴△DEF∽△BHC
∴EF:DF=CH:BC=(2/√5)a:2√2a=1:√10=√10/10