∵AB=4,AC=2
∴BC=√AB²+AC²-2AB*ACcosA
=√4²+2²-2*4*2*(-1/2)
=2√7
又∵BC/sinA=AC/sinB
∴sinB=ACsinA/BC=2*√3/2/2√7=√21/14
∵A,B,C为三角形内角
∴cosB=√1-sin²B=√1- 21/196=√175/14
∴tanB=sinB/cosB=√21/14/√175/14=√21/√175=√3/5
∵AB=4,AC=2
∴BC=√AB²+AC²-2AB*ACcosA
=√4²+2²-2*4*2*(-1/2)
=2√7
又∵BC/sinA=AC/sinB
∴sinB=ACsinA/BC=2*√3/2/2√7=√21/14
∵A,B,C为三角形内角
∴cosB=√1-sin²B=√1- 21/196=√175/14
∴tanB=sinB/cosB=√21/14/√175/14=√21/√175=√3/5