设:(x^4+ax^2-bx+2)/(x^2+3x+2)=cx^2+dx+z
用x^2+3x+2乘以cx^2+dx+z
展开,对应项系数相等:
cx^4+(d+3c)x^3+(z+3d+2c)x^2+(3z+2d)x+2z=x^4+ax^2-bx+2
c=1
d+3c=0
z+3d+2c=a
3z+2d=-b
2z=2
解方程组
得到答案:c=1,d=-3,z=1,b=3,a=-6
设:(x^4+ax^2-bx+2)/(x^2+3x+2)=cx^2+dx+z
用x^2+3x+2乘以cx^2+dx+z
展开,对应项系数相等:
cx^4+(d+3c)x^3+(z+3d+2c)x^2+(3z+2d)x+2z=x^4+ax^2-bx+2
c=1
d+3c=0
z+3d+2c=a
3z+2d=-b
2z=2
解方程组
得到答案:c=1,d=-3,z=1,b=3,a=-6