令a=1999
则根号下=(a-1)a(a+1)(a+2)+1
=[(a-1)(a+2)][a(a+1)]+1
=[(a²+a)-2](a²+a)+1
=(a²+a)²-2(a²+a)+1
=(a²+a-1)²
所以原式=√(a²+a-1)²-a²
=a²+a-1-a²
==a-1
=1998
令a=1999
则根号下=(a-1)a(a+1)(a+2)+1
=[(a-1)(a+2)][a(a+1)]+1
=[(a²+a)-2](a²+a)+1
=(a²+a)²-2(a²+a)+1
=(a²+a-1)²
所以原式=√(a²+a-1)²-a²
=a²+a-1-a²
==a-1
=1998