A(3,-1)
角B的平分线所在方程:
L1:x-4y+10=0,k(L1)=0.25
B(4b-10,b)
AB的中点D
xD=(xA+xB)/2=2b-3.5
yD=(yA+yB)/2=0.5b-0.5
AB边上的中线方程:
L2:6x+10y-59=0
6*(2b-3.5)+10*(0.5b-0.5)-59=0
b=5
B(10,5)
k(AB)=6/7
[k(BC)-k(L1)]/[1+k(L1)*k(BC)]=[k(L1)-k(AB)]/(1+k(L1)*k(AB)]
[k(BC)-0.25]/[1+0.25k(BC)]=(0.25-6/7)/(1+0.25*6/7)
k(BC)=-2/9
BC:2x+9y-65=0