根据题意有:
sqrt(an)=sqrt2/2*sqrt(a[n+1])
即:
a[n+1]/an=2
所以an=a1*2^(n-1)=4*2^(n-1)=2^(n+1)
b[n+1]=a[n+1]+an
b[n+1]=2^(n+2)+2^(n+1)=3*2^(n+1)
所以bn=3*2^n
Sn=3*(2^1+2^2+2^3+.+2^n)=3*2*(2^n-1)/(2-1)
即Sn=6*2^n-6
令Tn= 1/b1+2/b2+3/b3+.+n/bn
则2Tn=2/b1+2/b1+3/b2+.+n/b[n-1]
Tn=2/b1+1/b1+1/b2+.+1/b[n-1]-n/bn
=1/3+1/6*[1-(1/2)^(n-1)]/(1-1/2)-n/bn
=2/3-2/(3*2^n)-n/(3*2^n)
不等式左边=Tn+n/(3*2^n)=2/3-2/(3*2^n)
原不等式可化成:
-2/(3*2^n)