y=(2sinx-1)/(cosx+1)
=(4sin(x/2)cos(x/2)-1)/2(cos(x/2))^2
=2tan(x/2)-0.5(tan(x/2))^2-0.5
设t=tan(x/2),t取值范围为整个实域
原式=-0.5t^2+2t-0.5
=-0.5(t^2-4t+1)
=-0.5(t-2)^2+1.5
所以原式最大值为1.5,最小负无穷
y=(2sinx-1)/(cosx+1)
=(4sin(x/2)cos(x/2)-1)/2(cos(x/2))^2
=2tan(x/2)-0.5(tan(x/2))^2-0.5
设t=tan(x/2),t取值范围为整个实域
原式=-0.5t^2+2t-0.5
=-0.5(t^2-4t+1)
=-0.5(t-2)^2+1.5
所以原式最大值为1.5,最小负无穷