(x-1)y''-xy'+y=(x-1)^2的齐次方程是(x-1)y''-xy'+y=0,
(x-1)y''-xy'+y=(x-1)^2解的结构就是(x-1)y''-xy'+y=0的通解加(x-1)y''-xy'+y=(x-1)^2的特解.
由于(x-1)^2不含e^x项,用待定系数法,设y*=ax^2+bx+c,把y*带入(x-1)y''-xy'+y=(x-1)^2,得到-ax^2+2ax-2a+c=x^2-2x+1,a=-1,b=0,c=-1
通解为Y=C1x+C2x^2-x^2-1=C1x+C2x^2-1