Sn=2n^2
an=Sn-S(n-1)=4n-2
a1=b1=2,a2=6
b2(6-2)=b1
b2/b1=1/4
{bn}为等比数列
所以bn=2*(1/4)^(n-1)
cn=an/bn=(2n-1)*2^(2n-1)
Tn=c1+c2+……+cn
=2+3*2^3+5*2^5+……+(2n-3)*2^(2n-3)+(2n-1)*2^(2n-1)………………(1)式
4Tn=2^3+3*2^5+5*2^7+……+(2n-3)*2^(2n-1)+(2n-1)*2^(2n+1)…………(2)式
(1)-(2)得
-3Tn=2+2^4+2^6+……2^(2n)-(2n-1)*2^(2n+1)
Tn=10/9-[2^(2n+2)]/9+(2n-1)*2^(2n+1)/3