∵f(x)=x^2+4x+3
∴f(ax+b)=(ax+b)^2+4(ax+b)+3
=a^2x^2+(4a+2ab)x+b^2+4b+3
=x^2+10x+24
两个多项式相等,那么对应系数相等
∴a^2=1,4a+2ab=10
解得a=1,b=3
∴ 5a -b = 5-3 = 2
∵f(x)=x^2+4x+3
∴f(ax+b)=(ax+b)^2+4(ax+b)+3
=a^2x^2+(4a+2ab)x+b^2+4b+3
=x^2+10x+24
两个多项式相等,那么对应系数相等
∴a^2=1,4a+2ab=10
解得a=1,b=3
∴ 5a -b = 5-3 = 2