任取x1>x2>0
f(x1)-f(x2)=√(x1^2+1)-ax1-√(x2^2+1)-ax2
=(x1^2+1-x2^2-1)÷(√(x1^2=1)+√(x2^2+1))-a(x1-x2)
=(x1-x2)((x1+x2)÷(√(x1^2+1)+√(x2^2+1))-a)
因为x1>x2只需要判断后面那个括号里的正负性
即(x1+x2)÷(√(x1^2+1)+√(x2^2+1))-a的正负性
又因为a>=1所以,只需判断(x1+x2)÷(√(x1^2+1)+√(x2^2+1))与1的大小关系
所以比较(x1+x2)-(√(x1^2+1)+√(x2^2+1))与0的大小
因为√(x1^2+1)>x1 √(x2^2+1)>x2
所以(x1+x2)