三角形ABC中,
sin(A+B)=sinC
又根据正弦定理
a=2RsinA,b=2RsinB,c=2RsinC
则原式可化为
sin(A-B)/sinC=(2sinC-sinB)/(2sinC)
∴2sin(A-B)=2sinC-sinB=2sin(A+B)-sinB
2sinAcosB-2cosAsinB=2sinAcosB+2cosAsinB-sinB
2cosAsinB=sinB
∵ sinB>0
∴cosA=1/2
A=π/3,B+C=2π/3
cos(B+C)/2=cosπ/3=1/2