c=4/(ab),代入a+b+c=2中得
a+b+4/(ab)=2
a²b+ab²+4=2ab,移项即有:
ab²+a(a-2)b+4=0.(*)
欲使方程(*)有意义,也就是使b有实数值,必有
Δ≥0,即
a²(a-2)²-16a≥0,解之得
a²-4a-12≥0
(a-6)(a+2)≥0
a≥6或a≤-2
若a≤-2,则因abc=4,则bc必为负数,即b,c两个数必为一正一负,这样a就不是最大者,所以此条件不成立
若a≥6,则b,c或同时为正,或同时为负,如为正,因a≥6,所以a+b+c必大于6,这与条件a+b+c=2不符,所以只能b,c同时为负.这时,a的最小值为6