f(x)=a*b
=√3sinx*cosx+cos²x
=√3/2*2sinx*cosx+cos²x-1/2+1/2
=√3/2*sin2x+1/2(2cos²x-1)+1/2
=√3/2*sin2x+1/2*cos2x+1/2
=sin(2x+π/6)+1/2
∵ x∈(0,π)
∴ (2x+π/6)∈(π/6,13π/6)
则 当2x+π/6=π/2,即x=π/6时,f(x)取得最大值,有
f(π/6)=sinπ/2+1/2=3/2
因此,f(x)的最大值3/2,此时x值为π/6
f(x)=a*b
=√3sinx*cosx+cos²x
=√3/2*2sinx*cosx+cos²x-1/2+1/2
=√3/2*sin2x+1/2(2cos²x-1)+1/2
=√3/2*sin2x+1/2*cos2x+1/2
=sin(2x+π/6)+1/2
∵ x∈(0,π)
∴ (2x+π/6)∈(π/6,13π/6)
则 当2x+π/6=π/2,即x=π/6时,f(x)取得最大值,有
f(π/6)=sinπ/2+1/2=3/2
因此,f(x)的最大值3/2,此时x值为π/6