1.六面体ABCD-A'B'C'D'中,AB=5,AD=3,AA'=7,角BAD=60度,角BAA'=角DAA'=45度
AC'^2 = (向量AB+向量AD+向量AA')^2=AB^2 + AD^2 + AA'^2 + "}}}'>

1个回答

  • ①.

    向量AC'=向量AB+向量AD+向量AA'

    =>

    AC'^2 = (向量AB+向量AD+向量AA')^2

    =

    AB^2 + AD^2 + AA'^2 + 2(向量AB*向量AD+向量AA'*向量AB+向量AD*向量AA')

    =

    AB^2 + AD^2 + AA'^2 + 2AB*ADcos60+2AA'*ABcos45+2AD*AA'cos45

    =

    25+9+49+15+35√2+21√2

    =

    98+56√2

    =>

    AC' = √(98+56√2)

    ②.以下均为向量

    A'B垂直AC',即证A'B*A'C=0,所以有:

    A'B*A'C=(A'A+AB)(AC+CC')=A'A*CC'+AB*CC'+AB*(AC+CC')

    =A'A*CC'+AB*CC'+AB*(AB+BC+CC')

    =-(AA')^2+0+(AB)^2+0+0

    =-a^2+a^2=0

    所以垂直(因为正方体,所以有很多已知的垂直,利用他们)

    因为/A'B/=/A'A+AB/=√((A'A+AB)^2)=√(A'A^2+AB^2+0)=√2*a

    /B'C/=/B'C'+C'C/=√((B'C'+C'C)^2)=√(B'C'^2+C'C^2+0)=√2*a

    A'B*B'C=(A'A+AB)(B'C'+C'C)=0+a^2+0+0=a^2

    所以,设夹角为θ,

    COSθ=COS=A'B*B'C/(/A'B/*/B'C/)=1/2

    所以,夹角θ=60