方差公式s^2=(1/n)[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
平均值m=(83+84+85+86+87)/5 =85
样本数n=5
所以,
方差s^2=(1/5)[(83-85)^2+(84-85)^2+(85-85)^2+(86-85)^2+(87-85)^2]
=(1/5)(4+1+1+4)
=2
方差公式s^2=(1/n)[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
平均值m=(83+84+85+86+87)/5 =85
样本数n=5
所以,
方差s^2=(1/5)[(83-85)^2+(84-85)^2+(85-85)^2+(86-85)^2+(87-85)^2]
=(1/5)(4+1+1+4)
=2