(1)等腰直角三角形.
∵a 2-2ab+b 2=0,
∴(a-b) 2=0,
∴a=b,
∵∠AOB=90°,
∴△AOB为等腰直角三角形;
(2)∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°,
∴∠MAO=∠MOB,
∵AM⊥OQ,BN⊥OQ,
∴∠AMO=∠BNO=90°,
在△MAO和△BON中,
∠MAO=∠MOB
∠AMO=∠BNO
OA=OB ,
∴△MAO≌△NOB,
∴OM=BN,AM=ON,OM=BN,
∴MN=ON-OM=AM-BN=5;
(3)PO=PD且PO⊥PD,
如图,延长DP到点C,使DP=PC,连接CP、OD、OC、BC,
在△DEP和△CBP,
DP=PC
∠DPE=∠CPB
PE=PB .
∴△DEP≌△CBP,
∴CB=DE=DA,∠DEP=∠CBP=135°,
则∠CBO=∠CBP-∠ABO=135°-45°=90°,
又∵∠BAO=45°,∠DAE=45°,
∴∠DAO=90°,
在△OAD和△OBC,
DA=CB
∠DAO=∠CBO
OA=OB ,
∴△OAD≌△OBC,
∴OD=OC,∠AOD=∠COB,
∴△DOC为等腰直角三角形,
∴PO=PD,且PO⊥PD.