f(x)=2cos²x-1+√3sin2x+1=cos2x+√3sin2x+1=2(1/2cos2x+√3/2sin2x)+1
=2sin(2x+π/6)+1,所以周期T=2π/2=π.
-π/2+2πn≤2x+π/6≤π/2+2πn,-π/3+πn≤x≤π/6+πn,即递增区间[-π/3+πn,π/6+πn],递减区间[π/6+πn,2π/3+πn]
(2) -π/6<x<π/6,则-π/6<2x+π/6<π/2
f(x)=2sin(2x+π/6)+1=5/3,sin(2x+π/6)=1/3.cos(2x+π/6)=2√2/3则sin2x=sin(2x+π/6-π/6)=sin(2x+π/6)cosπ/6+sinπ/6cos(2x+π/6)=(√3-2√2)/6