证明:CD⊥AB,△ABC为直角三角形,∠ACB=90
所以:CD^2+DB^2=BC^2 1
CD^2+AD^2=AC^2 2
1+2得:2CD^2+DB^2+AD^2=BC^2+AC^2=AB^2=(AD+DB)^2=AD^2+DB^2+2AD×BD
2CD^2=2AD×BD
CD^2=AD×BD
得证.
证明:CD⊥AB,△ABC为直角三角形,∠ACB=90
所以:CD^2+DB^2=BC^2 1
CD^2+AD^2=AC^2 2
1+2得:2CD^2+DB^2+AD^2=BC^2+AC^2=AB^2=(AD+DB)^2=AD^2+DB^2+2AD×BD
2CD^2=2AD×BD
CD^2=AD×BD
得证.