解f(x)=asinx+(2-b)cosx
=√[a^2+(2-b)^2](a/[a^2+(2-b)^2]sinx+((2-b)/[a^2+(2-b)^2]cosx))
=√[a^2+(2-b)^2]sin(x+θ)
则tanθ=(2-b)/a
又由函数f(x)=asinx+(2-b)cosx(a>0,b>0)关于直线x=π/4对称
故θ=kπ+π/4,k属于Z
故tanθ=1
即(2-b)/a=1
即a=2-b
即a+b=2
故1/a+1/b
=(1/a+1/b)×1
=(1/a+1/b)×(a+b)/2
=1/2[1+1+b/a+a/b]
=1/2(2+b/a+a/b)
≥1+1/2×2√b/a×a/b
=1+1
=2
故1/a+1/b的最小值为2.