f(-x)=(ax²+1)/(-bx+c)=-f(x)=(ax²+1)/(-bx-c)
所以-bx+c=-bx-c
c=0
f(x)=(ax²+1)/bx=(a/b)x+(1/b)/x
b是自然数则b>0
有最小值
则显然a>0
(a/b)x+(1/b)/x>=2√[(a/b)x*(1/b)/x]=2(√a)/b=2
a/b²=1
a=b²
f(1)=(a+1)/b=(b²+1)/
f(-x)=(ax²+1)/(-bx+c)=-f(x)=(ax²+1)/(-bx-c)
所以-bx+c=-bx-c
c=0
f(x)=(ax²+1)/bx=(a/b)x+(1/b)/x
b是自然数则b>0
有最小值
则显然a>0
(a/b)x+(1/b)/x>=2√[(a/b)x*(1/b)/x]=2(√a)/b=2
a/b²=1
a=b²
f(1)=(a+1)/b=(b²+1)/