(1)DM=EM;(1分)
证明:过点E作EF∥AB交BC于点F,(2分)
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,∴∠EFC=∠C,
∴EF=EC.又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∠BDE=∠FEM
∠BMD=∠FME
BD=EF
∴△DBM≌△EFM,∴DM=EM.(4分)
(2)成立;(5分)
证明:过点E作EF∥AB交CB的延长线于点F,(6分)
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,
∴∠EFC=∠C,∴EF=EC.
又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∠BDE=∠FEM
∠BMD=∠FME
BD=EF
∴△DBM≌△EFM;∴DM=EM;(8分)
(3)过点E作EF∥AB交CB的延长线于点F,
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:m,
∴MD=
1
m
ME