解题思路:先由∠CDG=∠B证明DG∥AB,所以得到∠1=∠DAB,又∠1=∠2,所以∠2=∠3,再次推出EF∥AD,即得到∠EFB=∠ADB,已知AD⊥BC于点D,故得到EF与BC的位置关系是垂直.
证明:∵∠CDG=∠B(已知),
∴DG∥AB(同位角相等,两直线平行),
∴∠1=∠3(两直线平行,内错角相等),
又∵∠1=∠2(已知),
∴∠2=∠3,
∴EF∥AD(内同位角相等,两直线平行),
∴∠EFB=∠ADB(两直线平行,同位角相等),
又AD⊥BC于点D(已知),
∴∠ADB=90°,
∴∠EFB=∠ADB=90°,
∴EF⊥CB.
点评:
本题考点: 平行线的判定与性质;垂线.
考点点评: 此题考查的知识点是平行线的判定与性质,关键是由已知证明EF∥AD,再证出∠EFB=∠ADB=90°.