设O点为原点,坐标为(0,0).
A,B坐标分别为(x1,y1)(x2,y2).
可知AB方程为(y-py1)/(x-px1) =(qy2-py1)/(qx2-px1)
由已知1/p+1/q=1 有q=p/(p-1)
带入方程 (y-py1)/(x-px1)=[y2/(p-1)-y1]/[x2/(p-1)-x1]
(y-py1)/(x-px1)=[y2-y1(p-1)]/[x2-x1(p-1)]
(y-py1)/(x-px1)
=(y2+y1-py1)/(x2+x1-px1)
明显知必过(x1+x2,y1+y2) 所以过定点