为什么指数函数满足f(x+y)=f(x)+f(y)
1个回答
f(xy)=loga (xy)=loga x + loga y=f(x)+f(y)
f(x+y)=a^(x+y)=a^x*a^y=f(x)*f(y)
我整错了 汗
相关问题
若一个函数满足f(x)f(y)=f(x+y),则它一定是指数函数嘛?
已知指数函数y=f(x)满足f(3)=2,则f^-1(2)=
f(x+y)=f(x)f(y),如果函数是连续的,证明f(x)是指数函数
若函数f(x)满足f(x+y)=f(x)+f(y) (x,y∈R)证明f(-x)f(x)
若f(x)满足f(xy)= f(x) + f(y),据此能否推出f(x/y)= f(x) — f(y)?
设函数f(x)满足f(x+y)=f(x)+f(y)(x,y∈R),求证:
f(x)满足f(x+y)=f(x)+f(y),证明f(x)为奇函数
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0
f(x)对于任意实数x,y满足f(x+y)=f(x)+f(y),当x>0时,f(x)