定义域为x>2或x1时,f(x)在定义域为增函数
∵f(m)=loga(n)+1
∴1-4/(m+2)=a*[1-4/(n+2)]
∵f(n)=loga(m)+1
∴1-4/(n+2)=a*[1-4/(m+2)]
两式相减得:4/(n+2)-4/(m+2)=a[4/(m+2)-4/(n+2)]
∴(a+1)[1/(m+2)-1/(n+2)]=0
∵m≠n,a>0,
∴上式无解
2)当0
定义域为x>2或x1时,f(x)在定义域为增函数
∵f(m)=loga(n)+1
∴1-4/(m+2)=a*[1-4/(n+2)]
∵f(n)=loga(m)+1
∴1-4/(n+2)=a*[1-4/(m+2)]
两式相减得:4/(n+2)-4/(m+2)=a[4/(m+2)-4/(n+2)]
∴(a+1)[1/(m+2)-1/(n+2)]=0
∵m≠n,a>0,
∴上式无解
2)当0