若函数f(x)=(a+3)sinxcosx(π/4)+(a-3)cosxsin(π/4)是偶函数,则 a=(

1个回答

  • 1.题目有误.

    2.(1).因tan(α-π/4)=2,

    tanα=tan[π/4+(α-π/4)]

    =[tan(π/4)+ tan(α-π/4)]/[1- tan(π/4)+ tan(α-π/4)]

    =(1+2)/(1-1*2)=-3.

    (2) 4(cosα)^2-3sin2α=4*(1+cos2α)/2-3sin2α

    =2+2cos2α-3sin2α

    =2+2*[1-(tanα)^2]/[1+(tanα)^2]-3*2tanα/[1+(tanα)^2]

    =2+2*(1-9)/(1+9)-6*(-3)/(1+9)

    =11/5.(万能公式)

    3.(1)

    f(x)=√3cos(ωx)^2+sinωxcosωx+a=√3cos(ωx)^2+1/2sin2ωx+a

    =√3*[1+cos2ωx]/2+1/2sin2ωx+a

    =a+√3/2+√3/2 cos2ωx+1/2sin2ωx

    =a+√3/2+sin(2ωx+π/3)

    因f(x)的图像在y轴右侧的第一个最高点的横坐标为π/6,所以有:

    sin(2ω*π/6+π/3)=sin[(ω+1)*π/3]=1.(ω+1)*π/3=π/2,ω=1/2.

    此时,f(x)= a+√3/2+sin(x+π/3).

    (2)f(x)在区间[-π/3,5π/6]上的最小值为√3,f(-π/3)<f(5π/6),

    即f(-π/3)=√3,a+√3/2+sin0=√3,a=√3/2.

    以上仅供参考.