1.题目有误.
2.(1).因tan(α-π/4)=2,
tanα=tan[π/4+(α-π/4)]
=[tan(π/4)+ tan(α-π/4)]/[1- tan(π/4)+ tan(α-π/4)]
=(1+2)/(1-1*2)=-3.
(2) 4(cosα)^2-3sin2α=4*(1+cos2α)/2-3sin2α
=2+2cos2α-3sin2α
=2+2*[1-(tanα)^2]/[1+(tanα)^2]-3*2tanα/[1+(tanα)^2]
=2+2*(1-9)/(1+9)-6*(-3)/(1+9)
=11/5.(万能公式)
3.(1)
f(x)=√3cos(ωx)^2+sinωxcosωx+a=√3cos(ωx)^2+1/2sin2ωx+a
=√3*[1+cos2ωx]/2+1/2sin2ωx+a
=a+√3/2+√3/2 cos2ωx+1/2sin2ωx
=a+√3/2+sin(2ωx+π/3)
因f(x)的图像在y轴右侧的第一个最高点的横坐标为π/6,所以有:
sin(2ω*π/6+π/3)=sin[(ω+1)*π/3]=1.(ω+1)*π/3=π/2,ω=1/2.
此时,f(x)= a+√3/2+sin(x+π/3).
(2)f(x)在区间[-π/3,5π/6]上的最小值为√3,f(-π/3)<f(5π/6),
即f(-π/3)=√3,a+√3/2+sin0=√3,a=√3/2.
以上仅供参考.