我想这样应该是能说的过去的:
设g(x)=f(x)-a,
s.t. lim g(x)=lim f(x)-a=0;
由于极限的局部保号性
存在x0,使得对于任意的x>x0时,g(x)>0;
由于g'(x)=f'(x)0
f(x)>a
呃,好像是不对的,要不试试反证?
我想这样应该是能说的过去的:
设g(x)=f(x)-a,
s.t. lim g(x)=lim f(x)-a=0;
由于极限的局部保号性
存在x0,使得对于任意的x>x0时,g(x)>0;
由于g'(x)=f'(x)0
f(x)>a
呃,好像是不对的,要不试试反证?