由已知f(x+3)=-f(x+1)得:
1°当x=-1时,f(2)=-f(0)=2014;
2°f(x+5)=-f(x+3)=f(x+1),即有f(x+4)=f(x),即f(x)周期为4.
综上:f[f(2014)+2]+3=f[f(2)+2]+3=f(2014+2)+3=f(2016)+3=f(0)+3=2017.f(2)=-f(0)=2014,所以f(0)=-2014。...
由已知f(x+3)=-f(x+1)得:
1°当x=-1时,f(2)=-f(0)=2014;
2°f(x+5)=-f(x+3)=f(x+1),即有f(x+4)=f(x),即f(x)周期为4.
综上:f[f(2014)+2]+3=f[f(2)+2]+3=f(2014+2)+3=f(2016)+3=f(0)+3=2017.f(2)=-f(0)=2014,所以f(0)=-2014。...