余弦定理
因a>0,故a^2+3a+3为最长边,其对角最大,设为A,
则cosA=[(2a+3)^2+(a^2+2a)^2-(a^2+3a+3)^2]/2(2a+3)(a^2+2a)
=[(2a+3)^2+(a^2+2a+a^2+3a+3)(a^2+2a-a^2-3a-3)]/2(2a+3)(a^2+2a)
=[(2a+3)^2+(2a^2+3a+2a+3)(-a-3)]/2(2a+3)(a^2+2a)
=[(2a+3)^2-(2a^2+3a)(a+3)-(2a+3)(a+3)]/2(2a+3)(a^2+2a)
=[(2a+3)-a(a+3)-(a+3)]/2(a^2+2a)
=[a+(a+3))-a(a+3)-(a+3)]/2(a^2+2a)
=a(-a-2/)2(a^2+2a)=-1/2
则A=120度