y=1+xe^y,求y'|x=0
y'=(xe^y)'==>y'=1*e^y+xe^y"}}}'>

1个回答

  • 题目:y=1+xe^y 求d^2/dx^2

    y=1+xe^y ==>y'=(1+xe^y )'

    ==>y'=(xe^y)'

    ==>y'=1*e^y+xe^y*y'

    ==>y'(1-xe^y)=e^y

    ==>y'=e^y/(1-xe^y)

    因为y=1+xe^y,则1-xe^y=2-y,得y'=e^y/(2-y)

    即dy/dx=e^y/(2-y)

    dy/dx=e^y/(2-y)

    ==>d(dy/dx)/dx=d(e^y/(2-y))

    ==>d(dy/dx)/dx=[e^y*dy*(2-y)-e^y*(-dy)]/(2-y)^2

    因为dy/dx=e^y/(2-y),则

    ==>d(dy/dx)/dx=[e^2y+e^2y/(2-y)]/(2-y)^2

    ==>d(dy/dx)/dx=e^2y[1+1/(2-y)]/(2-y)^2

    求二阶导数是对一阶导数直接再次求导,可用d(dy/dx)/dx这个公式

    dx是微分变量