当三角形在正方形之外时
连接O1A,O1B;O2A,O2B ;O1O2
∵AB即是⊙O1的内接正方形的一边
∴∠AO1B=360÷4=90°
△AO1B为等腰直角三角形
又∵AB是⊙O2的内接正三角形的一边
∴∠AO2B=360÷3=120°
∵ O1O2平分AB垂直相交于C,则AC=CB=CO2=2,∠O1CA=90°
∴∠AO1C=120÷2=60°
sin60°=AC/AO1
∴AO1=2÷√3/2=4√3/3 (⊙O1的半径)
sin30°=CO1/AO1
∴CO1=4√3/3×1/2=2√3/3
∴O1O2=CO2+CO1=2+2√3/3
当三角形在正方形之内时
连接O1A,O1B;O2A,O2B ;O1O2
∵AB即是⊙O1的内接正方形的一边
∴∠AO1B=360÷4=90°
△AO1B为等腰直角三角形
又∵AB是⊙O2的内接正三角形的一边
∴∠AO2B=360÷3=120°
∵ O1O2平分AB垂直相交于C,则AC=CB=CO2=2,∠O1CA=90°
∴∠AO1C=120÷2=60°
sin60°=AC/AO1
∴AO1=2÷√3/2=4√3/3 (⊙O1的半径)
sin30°=CO1/AO1
∴CO1=4√3/3×1/2=2√3/3
∴O1O2=CO2-CO1=2-2√3/3
望采纳.