设y=yx,x=sint ,y=arctant,求dy/dx
2个回答
x=sint
dx/dt = cost
y= arctant
dy/dt = 1/(1+t^2)
dy/dx = dy/dt .(dt/dx)
= 1/[(cost)(1+t^2)]
相关问题
设x=ln(1+t²) y=t-arctant 求dy/dx d²y/dx²
设x=sint,y=cost则dy/dx=
设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc
设{x=sint y=cos2t,则dy/dx|t=π/4=
设方程e^y+yx^2-e=0所确定的隐函数为y=y(x),则求dy/dx
请高手赐教:设由参数方程:x=t-arctant;y=ln(1+t^2) 确定y是x的函数,求dy/dx.
x=2t^2 +1 y= sint 求dy/dx是多少?
x=a(cost+tsint) y=a(sint—tcost) 求导dy/dx
y=∫(sint)^3dt,下限0,上限根号x,求dy/dx
用隐函数求dy/dx,y=x^2+yx 我算的dy/dx为(2x+y)/(y-x),但答案不是这个,求详解