解题思路:(1))先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;
(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形,故∠NMC=∠DCN=60°故可得出结论.
证明:(1)∵△ACD和△BCE是等边三角形,
∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,
∵∠DCA=∠ECB=60°,
∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,
在△ACE与△DCB中,
∵
AC=DC
∠ACE=∠DCB
CE=CB,
∴△ACE≌△DCB,
∴AE=BD;
(2)∵由(1)得,△ACE≌△DCB,
∴∠CAM=∠CDN,
∵∠ACD=∠ECB=60°,而A、C、B三点共线,
∴∠DCN=60°,
在△ACM与△DCN中,
∵
∠MAC=∠NDC
AC=DC
∠ACM=∠DCN=60°,
∴△ACM≌△DCN,
∴MC=NC,
∵∠MCN=60°,
∴△MCN为等边三角形,
∴∠NMC=∠DCN=60°,
∴∠NMC=∠DCA,
∴MN∥AB.
点评:
本题考点: 等边三角形的判定与性质;全等三角形的判定与性质.
考点点评: 本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,根据题意判断出△ACE≌△DCB,△ACM≌△DCN是解答此题的关键.