1
m∥n,即:(c-a)/(a+b)=(b-a)/c
即:b^2-a^2=c^2-ac
即:a^2+c^2-b^2=ac
故:cosB=(a^2+c^2-b^2)/(2ac)=1/2
即:B=π/3
2
sinA^2+sinC^2=(1-cos(2A))/2+(1-cos(2C))/2
=1-(cos(2A)+cos(2C))/2
=1-cos(A+C)cos(A-C)
=1+cosBcos(A-C)=1+cos(A-C)/2
=1+cos(2A-2π/3)/2
0
1
m∥n,即:(c-a)/(a+b)=(b-a)/c
即:b^2-a^2=c^2-ac
即:a^2+c^2-b^2=ac
故:cosB=(a^2+c^2-b^2)/(2ac)=1/2
即:B=π/3
2
sinA^2+sinC^2=(1-cos(2A))/2+(1-cos(2C))/2
=1-(cos(2A)+cos(2C))/2
=1-cos(A+C)cos(A-C)
=1+cosBcos(A-C)=1+cos(A-C)/2
=1+cos(2A-2π/3)/2
0