设弦的两端为(1+a,-1+b),(1-a,-1-b),
代入椭圆方程得
(1+a)^2+4(-1+b)^2=16,
(1-a)^2+4(-1-b)^2=16.
相减得4a-16b=0,
∴弦的斜率b/a=1/4,
∴弦所在直线的方程是x-4y-5=0.
设弦的两端为(1+a,-1+b),(1-a,-1-b),
代入椭圆方程得
(1+a)^2+4(-1+b)^2=16,
(1-a)^2+4(-1-b)^2=16.
相减得4a-16b=0,
∴弦的斜率b/a=1/4,
∴弦所在直线的方程是x-4y-5=0.