[(sinθ+cosθ-1)(sinθ-cosθ+1)]/sin2θ
=[(sinθ)^2-(cosθ-1)^2]/(2sinθcosθ)
=[(sinθ)^2-(cosθ)^2+2cosθ-1]/(2sinθcosθ)
=[2cosθ-2(cosθ)^2]/(2sinθcosθ)
=(1-cosθ)/sinθ
=[1-(1-2(sinθ/2)^2)]/(2sinθ/2cosθ/2)
=[2(sinθ/2)^2]/(2sinθ/2cosθ/2)
=sinθ/2/cosθ/2
=tanθ/2
[(sinθ+cosθ-1)(sinθ-cosθ+1)]/sin2θ
=[(sinθ)^2-(cosθ-1)^2]/(2sinθcosθ)
=[(sinθ)^2-(cosθ)^2+2cosθ-1]/(2sinθcosθ)
=[2cosθ-2(cosθ)^2]/(2sinθcosθ)
=(1-cosθ)/sinθ
=[1-(1-2(sinθ/2)^2)]/(2sinθ/2cosθ/2)
=[2(sinθ/2)^2]/(2sinθ/2cosθ/2)
=sinθ/2/cosθ/2
=tanθ/2