log1/2[a^2x+(ab)^x-2·b^2x+1]0可以十字相乘:(a^x+2b^x)(a^x-b^x)>0因为a^x+2b^x恒为正,所以:a^x-b^x>0a^x>b^x(a/b)^x>1lg[(a/b)^x]>lg1xlg(a/b)>0当a>b时,a/b>1,则lg(a/b)>0,所以:x>0当a
解不等式log1/2[a^2x+(ab)^x+2·b^2x+1]
1个回答
相关问题
-
解不等式log(1/2) X^2>log(1/2) (2-x)
-
解不等式log1/2(x+2)《2log2 1/x
-
设f(x)=log1/2[a^2x+2(ab)^x-3b^2x+1](a>0,b>0),解不等式f(x)<0
-
解不等式:log2 (x^2-2x+2)>log2 (2x-1)
-
解不等式:log12(x2−x−2)>log12(x−1)−1.
-
解不等式log2(x+1)+log1/4(x-1)〉log4(2x-1)
-
解不等式log(2x^2-1) (3x^2+2x-1)
-
解不等式log1/2(3-x)>=log2(x+3)-1
-
解不等式log2(4^x+1)>log(2^x+7)
-
解不等式2log2(2^x+1)