lim(x→∞)[(2x-1)/(2x+1)]^x
=lim(x→∞)[1-2/(2x+1)]^x.
设-2/(2x+1)=1/t
→x=-(2t+1)/2且t→-∞.
∴lim(x→∞)[(2x-1)/(2x+1)]
=lim(t→-∞)(1+1/t)^[-(2t+1)/2]
=[lim(t→-∞)(1+1/t)^(-1/2)]/[lim(t→-∞)((1+1/t)^t)^(-1)]
=[(1+0)^(-1/2)]/[e^(-1)]
=e.
lim(x→∞)[(2x-1)/(2x+1)]^x
=lim(x→∞)[1-2/(2x+1)]^x.
设-2/(2x+1)=1/t
→x=-(2t+1)/2且t→-∞.
∴lim(x→∞)[(2x-1)/(2x+1)]
=lim(t→-∞)(1+1/t)^[-(2t+1)/2]
=[lim(t→-∞)(1+1/t)^(-1/2)]/[lim(t→-∞)((1+1/t)^t)^(-1)]
=[(1+0)^(-1/2)]/[e^(-1)]
=e.