(1)∵二次方程 a n x 2 - a n+1 x+1=0(n∈ N * ) 有两个实根α和β,
∴ α+β=
a n+1
a n , αβ=
1
a n ,
∵6α-2αβ+6β=3,∴
6 a n+1
a n -
2
a n = 3 ,
即6a n+1-2=3a n,得 a n+1 =
1
2 a n +
1
3 .
(2)证明:∵ a n+1 =
1
2 a n +
1
3 ,
∴ a n+1 -
2
3 =
1
2 a n +
1
3 -
2
3 =
1
2 a n -
1
3 ,
∴ a n+1 -
2
3 =
1
2 ( a n -
2
3 ) ,
所以 { a n -
2
3 } 是等比数列.