对任意b-a > ε > 0,由f(x)在[a,b]非负且严格单调递增 (不能是递减的,否则易有反例),
有0 ≤ f(b-ε/2) < f(b) = 1.
于是存在N = [ln(ε/(2b-2a))/ln(f(b-ε/2))]+1 > 0,使得当n > N时成立0 ≤ f(b-ε/2)^n < ε/(2b-2a).
因此0 ≤ ∫{a,b} f(x)^n dx = ∫{a,b-ε/2} f(x)^n dx+∫{b-ε/2,b} f(x)^n dx
≤ ∫{a,b-ε/2} f(b-ε/2)^n dx+∫{b-ε/2,b} f(b)^n dx
≤ (b-a)·f(b-ε/2)^n+ε/2
< (b-a)·ε/(2b-2a)+ε/2
= ε.
即有lim{n → ∞} ∫{a,b} f(x)^n dx = 0.