解题思路:(1)取AB的中点为N,连接MN,PN,由三角形的中位线定理和平行四边形的性质与判定即可证明平面PMN∥平面EBC,再利用面面平行的性质定理即可得到结论;
(2)由面面垂直的性质可得CB⊥EF;再由∠AEF=∠AEB=45°,可得FE⊥EB,从而可得FE⊥平面BCE,可得∠FCE为直线CF与平面BCE所成角.再由已知可求出EC,EF即可.
(1)取AB的中点为N,连接MN,PN,
又∵M是AE的中点,∴MN∥EB.
∵BN
∥
.PC,∴四边形BCPN是平行四边形.
∴PN∥BC,
∵MN∩NP=N.
∴面PMN∥面EBC,
∴PM∥平面BCE.
(2)∵正方形ABCD⊥平面四边形ABEF,BC⊥AB,
∴BC⊥平面ABEF,
∴BC⊥EF,BC⊥BE.
∵△ABE是等腰直角三角形,AE=AB=2,∴∠AEB=45°,EB=2
2.
又∵∠AEF=45°.
∴∠FEB=90°.
∴FE⊥EB.
又EB∩BC=B,FE⊥面EBC,
∴∠FCE为直线CF与平面BCE所成角,
由上面可知:EC=
BC2+EB2=2
3.
∵FA=FE,∠AEF=45°,∴△AEF是等腰直角三角形,∴FE=
2.
∴tan∠FCE=
FE
EC=
6
6.
点评:
本题考点: 直线与平面所成的角;直线与平面平行的判定.
考点点评: 熟练掌握三角形的中位线定理和平行四边形的性质与判定、面面平行的判定与性质定理、面面垂直的性质、线面垂直的判定和性质定理、线面角的定义是解题的关键.