1.△ACD∽△BCE,都有一个直角,共∠ACB;得∠DAC=∠CBE;△CDA≌△FDB,都有直角,角ABC=45°,AD为高,则AD=BD,FG=CD,GF∥BD,则∠G=∠ABD=45°=∠FAG,得AF=FG,故AD+FG=CD.
BE=EF,BE为高,则BA=AF,由1.可知AF=FG,故BA=FG,BD=4,AB=4√2=FA=FG,故FG=4√2.
1.△ACD∽△BCE,都有一个直角,共∠ACB;得∠DAC=∠CBE;△CDA≌△FDB,都有直角,角ABC=45°,AD为高,则AD=BD,FG=CD,GF∥BD,则∠G=∠ABD=45°=∠FAG,得AF=FG,故AD+FG=CD.
BE=EF,BE为高,则BA=AF,由1.可知AF=FG,故BA=FG,BD=4,AB=4√2=FA=FG,故FG=4√2.