解题思路:利用列举法就可以求出任意三条线段可以组成的组数.再根据三角形三边关系定理确定能构成三角形的组数,就可求出概率.
从这五条线段中任取三条,显然共有C52=10,共10种情况.
根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.其中能构成三角形的有2,5,6;5,6,8二种情况,
故概率是 [2/10]=[1/5].
故答案为:[1/5].
点评:
本题考点: 几何概型.
考点点评: 注意分析任取三条的总情况,再分析构成三角形的情况,从而求出构成三角形的概率.用到的知识点为:概率=所求情况数与总情况数之比.